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We give three globally convergent iteration schemes for finding zeros of

maximal monotone operators in Hilbert spaces. We assume that the operators are

defined in the whole space and are either continuous, grow at most linearly at

infinity or map bounded sets into bounded sets. As applications we have globally

convergent iteration schemes for minimizing convex functionals in Hilbert spaces.
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SIGNIFICANCE AND EXPLANATION

One of the main problems in numerical mathematics is to construct solutions
1 to equations f(x) = 0. It is important to know whether solutions can be found
K by iteration, i.e. using only a countable number of evaluations of f. 1In this
| paper we give convergent iteration schemes for operators which in a mathematical
, sense form a well defined general class, including, e.g., minimization of convex

functionals. Although in many practical cases the convex functional would have

some additional properties which imply that the usual gradient method would con-
verge, we do not know of any previous iterative algorithms which would always
converge for the general class of functionals considered here.

Our schemes all have the following important properties: only qualitative
assumptions on the operators are made, one does not have to know whether solutions
exist, and the schemes work independently of the initial quess. On the other
hand, demanding all these properties implies that the convergence may be very

slow.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authorx ,ofy this feﬁt. _! 4
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GLOBAL ITERATION SCHEMES FOR MONOTONE OPERATORS
Olavi Nevanlinna
1. Introduction.
In this paper we consider iteration schemes to find zeros of monotone operators in
Hilbert spaces. Let H be a real Hilbert space. A possibly multivalued operator A is
4

said to be monotone if

i ) - - > f 11 x, and " .

( ) (y1 Yy %Xy x2) > 0 for a i€ D(A) n; Vs Ax1
A is maximal monotone if it is monotone and there does not exist any monotone proper exten- i

sion of A. Examples of maximal monotone operators are subdifferentials 3 of proper con-
vex lower semicontinuous functionals ¢, and finding solution of & (x) > 0 is equivalent

to minimizing ¢. 1

We shall show, using ideas of Bruck [3] and Crandall and Pazy (4], that if A ic defined
in the whole space and is either continuous or grows only linearly at infinity, then we can

find sequeiices {An}, {On} such that if

(1.2) X4 €%, Xn(Axn + enxn) '

then X~ converges strongly to a solution of Ax 3 0, if there exists any, otherwise it

tends to infinity. 1In particular, we can find the minimum of any lower semicontinuous convex

functional which is either continuously differentiable or grows only quadratically at infinity.
Assume for a while that A is strongly monotone, i.e. it is of the form bI + B, where

b >0, I is the identity operator and B is maximal monotone. Then R(bI + B) = H and

bx + Bx > 0 has a unique solution. Any strictly contractive mapping T:H + H,

|Tx - Tyl klx - yl, k < 1, gives an example of such operators by defining A =1 - T

IA

(= (1-k)I + (kI-T)), and the zero of A, or the fixed point of T, can be obtained by

picard-Lindelof iteration

(1.3) Xl ™ 'rxn v
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If B is Lipschitz-continuous then we can still iterate in the form

(1.4) x =x = A(Bx +bx) ,
n+l n n n

provided A is small enough, and this was used by Zarantonello [8] to prove the existence
of a zero for those operators. Lipschitz-continuity can be weakened, in a natural way, into
two directions: assuming that the operator satisfies a linear growth condition or assuming

only continuity. In both cases the zero can he found by iteration in the form

(1.5) X 41 € %" ln(an + bxn) v

where (An) is a sequence of possitive numbers. Bruck {2] considered (1.5) with An = c:;o
for operators which have open domains, but his result is then local in the sense that conver-
gence is guaranteed only when the initial value is chosen close enough to the solution. In
section 4 we state a global version of this result by assuming that A satisfies a linear
growth condition.

Continuous monotone operators are maximal and therefore bx + Bx = 0 has a solution.
In [4]) Crandall and Pazy gave a constructive proof for the existence of a solution in general
Banach spaces. It uses iteration of the form (1.5) where An is decided at each step using

a finite number of evaluations of Ax.

I1f the operator is not strongly monotone schemes of the form

(1.6) x € X =~ A Ax
n n'n

n+l

can still be used if the operator satisfies a convergence condition (6], but without some
additional properties, even when A is the gradient of a convex functional, we generally do
not have stronqg convergence. To obtain strong convergence in such a case we use the method
of regularization: we apply the scheme (1.6) to operators A + enx and let en tend to zero
as n » », The problem is to define (An} and (6n] in such a balanced way that strong con-
vergence to a correct solution is obtained. Here we use ideas that go back to Bruck (3] and
Halpern [5]).

We also show that if A is defined in the whole space and is bounded, then we can always

define a convergent scheme of the form (1.2), which uses a finite number of reinitializations.

“2w

et e g ey

i




2. Results.
Let A be a maximal monotone operator in a Hilbert space H. In our first result A

is assumed to be continuous and in the second A satisfies a growth condition of the form
(2.2) lyl <ca + |x]), for all x, and y ¢ Ax .

Finally, in the third result we assume that A maps bounded sets into bounded sets.

The algorithms can be appliecd without knowing whether there exists solutions cr not, and we
do not assume anything on the modulus of continuity, nor one has to know the value of the con-
stant € in (2.1}).

We state the result first for continuous operators. Let {hn) be a decreasing sequence

of reals such that lim h_ = 0, and let {rn} be a decreasing sequence satisfying
nso
"n
lim rn = 0, lim = 1. Choose a decreasing function ¢(s) satisfying
n>w n»*® n+l
o
(2.2) [ p(g)ds < »
0

and such that for all 8 > 0 there exists é(t,so) so that

(2.3) bis) < 8(t,s) dis+t), for s > s

For example, wy(s) = s @ with a > 1 is such a function. Finally fix a number a > 0. Set

AO = ho, (b = ro and n(0) = 0, where n(i) will be an increasing sequence of integers,

such that q] =r, for n(i) <n <n(i+l). Now let An be the largest h ¢ {hnl such that

i
n~1 i
(2.4 [AGx - h(ax +06x)) - Ax - ho (Ax +6x)| < w(jzoxj) .

Such an h exists since A 1is continuous. If

n
(2.5) o, L XN 2a

j=n (i)
then set n(i+l) = n + 1, and 8n+1 =L otherwise keep 0n¢1 =r, .

Theorem 1. Let A be a maximal monotone continuous operator in a Hilbert space with

¢ H, where

D(A) = H. Assume that {xn} satisfies (1.2) with any initial value X

Riessimins
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{xn}. (Gn} are defined recursively as above by (2.4) and (2.5). If A-lo # @, then x

converges strongly to p, where p is the element in A-lo with minimum norm, and if
A-IO = @, then lxnl + ® ag n + @ in such a way that ann converges to -aO where aO

is the element in R(A) with minimum norm.

The proof is postponed to section 3.

1f instead of continuity we assume that A satisfies a growth condition of the form
(2.1) then the sequences {)\n}, {en} can be chosen independently of the operator A. The
following definition is essentially as in [3]:
Definition. Two sequences {An}. {en) of positive real numbers are acceptably paired if

(en} is nonincreasing, 1lim en = 0, and there exists an increasing sequence {n(i)} of in-

o
tegers such that
n(i+l)~1
(2.6) lim inf 6 . Z. Ay >0
n+o j=n(i)
n(i+l)-1
(2.7 li:;up 8 (i) j=nz(i) Aj < o
n(i+l)-1
ke if: Bnt) ~ Cnqaeny’ fn i) 5 Ak

O
part of the proof of Theorem 1 consists of showing that the recursive procedure (2.4), (2.5)
always generates acceptably paired sequences. Another example of acceptably paired sequences
1 i

is the following (3]: An =n ", en = (log log n)-l, n(i) = i" .

Theorem 2. Let A be a maximal monotone operator in a Hilbert space and assume that it
is defined in the whole space and satisfies the growth condition (2.1) for some C < =,

2

Assume that (kn} € £° and that (xn}, (en} are acceptably paired. If (xn) satisfies

(1.2) with any initial value x

o € H, then the conclusion of Theorem 1 holds.

0
The proof of this result is given in section 4.
Assume now that A is defined in the whole space and is only bounded, i.e. it maps

bounded sets into bounded sets. We give an iteration scheme which uses reinitialization if

“ds




x tends to be too big.

Consider the scheme

M M M u B
(2.9) X1 € % yukn(Axn + ann), Xy = Xy o

where 7y is any decreasing sequence such that 1lim Ty ™ 0, and (ln}, {Gn} are acceptably
" P
paired and (An} € 22. Choose an increasing sequence (Ru} such that 1lim Ru = ®,
o

Now compute {xz} for a fixed u wusing (2.9), as long as [x: - xol s Ru. Tf

Y & U+l
* 1 xol > Ru' then start computing the sequence (xn )
Theorem 3. Let A be a bounded maximal monotone operator, and assume that {x:} is
obtained using the procedure described above. If A-lo # @, then,for some u.lx: - xol < Ru

Y tends to the minimum element in A_lo; otherwise A 10 = g and

for all n, and x
tends to infinity.
0

Proof. We observe first that if A-lo =y u tends to infinity. 1In fact, otherwise

for some fixed y, (x:} [ BR (xo) for all n, where Bs(z) denotes the closed ball of
M

radius s, centered at 2z. But then A, operating only in BR (xo) can be thought of as

"
-1 .
satisfying the growth condition (2.1) and, by Theorem 2, we would have A 0 # £ and x:

converging to the minimum element in A_lo. Therefore, the only thing we have to prove is,
4 =1 Rt
that if A "0 ¥ @ then u cannot tend to infinity.

Consider the scheme

(2.10) X4 €% " ykn(Axn + enxn) '

where y > 0 and {An}, (en} are as in (2.9). A theorem of Bruck [3, Theorem 3] includes
the following result: If y ¢ A-lo and for some r > |y|, X, € Br(y) and A is defined
and bounded in BZr(y)' then there exists a y.'> 0 such that if y = v., then xn stays
in BZr(y) and converges to the minimum element in A-lo. It is evident from the proof of
this result that the same conclusion actually holds for all vy € (0,7.].

1f A losg, let r= max{|y|, [x,-y|}, for some y e 2"lo. Then, as u grows, there

*
is a Mg such that Yu <Y and Ru > 3r, so that we must have

0

0

o tin




u
nax
< ’
{xn ke B‘u_(y) c BRu (xo) for some Fnax < Yo
0

and the proof is complete.

0

Continuous monotone operators are maximal, but in the situations discussed by Theorems
2 and 3 it may happen that we do not know the maximality of the operator. However, even if
the operator is not maximal, the schemes are well defined and the conclusions hold, with the
modification that the convergence takes place exactly when there exists a monotone extension

A of the operator A such that i\’lo # 9.




3. Proof of Theorem 1.

The proof consists formally of two parts. Denote by Py the unique vector such that

(3.1) 6p +Ap » 0
nn n

We show that the sequence (xn} generated by (1.2), (2.4), (2.5) behaves for large n as
(pn}, and, in fact this is true in any Banach space for continuous accretive operators.

; =1 g .
However, in general A 0 ¥ @ does not imply that (pn} converges. In Hilbert spaces this

always happens and in particular the convergence of {xn} follows.

Let J) = (I + AA)-I, so that ek J1 0. Now the behavior of By follows from the
=
n
following result.

Lemma. Let A be any maximal monotone operator in a Hilbert space. Then

P B0
(3.2) lim 3 J)O = -a .

) roo

0 A o " o =
where a  is the element in R(A) with minimum norm. If A 10 = @ then {J)Ol » @ as

A > =, and if A_lo # #, then J)O »p as A » » where p is the element in A-IO with

minimum norm.

a

Proof. Let Bt denote the Yosida approximation of a maximal monotone operator B:

Bt = t—l(t - Jt(B))' where Jt(B) = (T + tB)—l. One verifies easily that Jt(B)O = (Bul)l 0.
t
Now Jt(B)O tends to the minimum element in D(B) as t » O [1, Theorem 2.2]). Therefore
(8-1)l 0 tends to the minimum element in D(B) as t » 0. For B-1 = A this means that
t

lim AtO = ao. and (3.2) follows since % JtO = —Ato. We also know (1, Proposition 2.6] that

tro

BtO tends to the minimum element in BO as t » 0 if O ¢ D(B), otherwise lBtOI » ©,

Using this for (A_l)1 0 with t » » yields the rest of the Lemma.
t

We consider first the following implicit iteration scheme

+ + .
(3.3) X + An(Axn H x )y % e

n+l +1 n n+l n n

P




Proposition 1. Let A be maximal monotone and {An). {en} be acceptably paired. Assume

o

that (xn} satisfies (3.3) so that Z |enl < o, If A-lo # ¢, then x converges to the
0

minimum element in A—lo, otherwise Ixnl + » in such a way that -enxn converges to the
minimum element in R(A).

a
Proof. There exists a unique sequence {yn} with yale Axn such that (3.3) holds. For
simplicity we shall denote the element also by Axn. First we reduce the problem to the case
where e = 0. In fact, if the conclusion holds for e =0 it also holds if {en} has com-
pact support. Then, approximating (én} € 9.1 by a sequence {en) with a compact support

and using the fact that the resolvents are contractions we have

(3.4) |x - x| <e€
n N

.- éj' < €, which completes the reduction. v
Subtract pn(i) from both sides of (3.3) to get

(3.5) B+A8 %G “ Py T ™1 ™ % T Bact)

Using (3.1) we obtain

Lt Anen“xnd - pn(i)) * (Xnen T Anen(i))pn(i)
(3.6)
A AR ) " B T Pay

where Apn(i) stands for the element satisfying en(i)pn(i) + Apn‘i) > 0. Since A is

monotone (3.6) yields

A+ 280 1% = Boagy | = Al = Syl [Pyl = 1% = Bogyy |
and iterating this from n(i) on we obtain |
n-1 @ n-1
BN oy = Pyl = j_l—I(-““ * 050 TIx ) < Pyl j_nfu)"jlenu) = 8l Iyl - ‘

Since 6 3 is nonincreasing we have




ST (N

|

n(i+l)-1 n(i+l)-1

=1 =
6 <
Sl e g2 H  as SLIPRTY
j=n (i) j=n(i)
n(i+l)-1
But (2.6) and (2.8) imply that there exists a > 0 such that 6n(i+l) i A. >a and
jen(i)
n(i+l)-1 oy
hence for some § < 1, T a + 2.6, < 6. For the sccond term in (3.7) we obtain
j=n(i) L.
ef ML -1 n(i+l)-1
€ = ¥ R 2.6 - > i > o .8).
n (i) R P B R LR T R by 2.5
j=n (i) j=n(i)

Hence, for n(i) < n < n(i+l) we have

(3.8} % = Pay! 2 1% = Bay ! Encty Bney

and in particular

(35 %0 a1y = Paey! <8120 = Pay! * Sni) 1Bacy ]

Since A 1is monotone we have

| 1 -
[Pnci) = Pacieny! S 1Pns) = Pngieny * 5 PPaci) ~ PPuieny) !
n(i+l)-
(3.10) _
= Loy = Cneserd acien 1oyl
% (1)
From (2.6)-(2.8) we see that lim R 1 = 0. Hence (3.9) and (3.10) yield
i n(i+l)
1%y a1y = Pacsny | 2 raeny = Baey! * 1Pacty = Prgasny !
(3.11)
28I 4y~ Paey! * iy IBagy!
®ni)
where a ,.. =¢ ,,, + ——— -1+ 0 as i + », But (3.10) and (3.11) imply that
n(i) n(i) (- B
n(i+l)
[x -p s supa )
-0, nl(i:l) JEESVR r{(i) n)! , i
- 1By (i41)) 1By (1) | s
holds for an(i) + 0 and § < 1 and therefore

-




(3.12) Tim == O

Using (3.8) we then obtain

fe. =p .|
(3.13) lim max T":———'l(—ll— =0
i~ n (i) <n<(i+1) Pr (1)l

1f a0 ¥ g then by Lemma , p ;. > p, where p is the minimum element in Ao, ana

by (3.13), we also have lim ]xn - p) = 0. Assume then that A™!

ne>e

0 = @§. By Lemma, |pnl i
and -enpn > ao. From (3.13) it follows immediately that Ixnl' + o as n + o, To prove

o,x -a®, consider, for n(i) < n < n(i+1),

(3.14) 9% = % i) Paca)] . 5 i e T
ai) * Py Pacy! T 1Y 1Py . S

The first term on the right in (3.14) tends to zero as i » =@ by (3.13), and in the second

I=, | 1% = ol 0
term I_TT— stays bounded while + 0 as i+ o, Since en(i)p (i) +> -a ,
Phciy! n(i) Ak
we finally obtain enxn -> -ao as n -+ »,
O

Schemes of the form (3.3) have also been discussed in [7].
Assume now that A is defined in the whole space and is continuous. Following the idea

in [4) we write the explicit scheme (1.2) as an implicit scheme (3.3) with errors:

(3.15) Xt )‘nu\xn+1 + enxnﬂ) b e,
where
(3.16) o An(hxml - Axn + Bﬂ(xn+1 - xn)) .

Proposition 2. If (An) and (en} are chosen according to the procedure described by (2.4)
o

and (2.5), then [ Ienl <=, and {)}, {8} are acceptably paired.
n=0

Proof. Using (2.4) we have

~10-
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Y @

nzolenl = ngoA“IM"” - A k0 (x . -
3 (T
G S N
n= g j=0 J
But (2.2) and (2.3) imply that

Ia 401 Lo, vl

) A ¥ Y A) <8(h ,h) A vy A

n=0 " j=0 ) S gD

©

8(hyshe) fows)ds <w

{A

o
which proves that z Ienl < o,
n=0

If (2.5) holds, then we have

n(i+l)-1

A, > a

5e
a roh j

> 0 J
°="ntd) Lt

r
: . n 5
<
since Aj ho and en(i) < ro and together with //én+1 + 1 these imply that {An),

(en} are acceptably paired. Assume therefore that for some n(i) there does not exist

any n such that (2.5) holds, i.e.

n
(3.17) en(i) A. <a forall n .
j=n(i) 7
This leads to a contradiction: Consider the scheme (3.3) with en = en(i) £6>0 and

o L
assume that z An < » and Z |en| < », One proves easily that xn converges to some
n=0 n=0

x_- In fact, if (en} has compact support then,for large enough n.|Axn + exnl is nonin-
creasing and therefore for some C < »
® ® ®
nZolxm-l 5 xn| i-cngoxn i nzolenl d
and so (xn} is a cauchy sequence. The general case follows using the same approximation

argument as in the proof of Proposition 1.

i




Since A is continuous there is an h € {hn} such that

|a(x_ - hiax_ + 0x)) - Ax_ - hO(Ax_ + 6x)]

veY Ay .
j=0 ’

<

N =

But then also

|A(x_ ~ h(ax_ + 6x )) - Ax_ - ho(Ax_ + 6x )|
n n n n n n

n-1
<YL
j=0
for large enough n and therefore An > h, contradicting the assumption {ln} € 11.
0
Theorem 1 follows by combining Proposition 1 and Proposition 2. y
0

~12-
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4. Proof of Theorem 2.

In [3) Bruck proves a convergence result for general maximal monotone operators using

(1.2), under the assumption that A-IO 4, (xn) is defined, and both (xnl, {yn], Y, ¢ Axn

are bounded. He then applies the result to prove the existence of a convergent iteration
scheme for operators which are bounded in a ball centered by a p € A_IO. The scheme is de-
fined, however, only after we have a priori knowledge on the location of A-lo and the
boundedness of A. Theorem 2 is a different version of Bruck's result in the sense that it
only assumes a qualitative growth condition to be satisfied; one does not have to know that
solutions exist and one can start from any initial vector.

We could prove the part of Theorem 2 where A—lo # ¢ by showing that (xn} is bounded
and then using the result of Bruck [3]. However, when showing that {xn) is bounded we
essentially shall get the convergence as well, and therefore we give here the complete proof.

Let again P, be defined by enpn o Apn > 0. We also denote by Apn the element v
in the set Apn which satisfies enpn +w =0, and, similarly, we denote by Axn the

n

t - - o S tin
vector (xn X )/)‘n enxn ubtrac g pn

- from both sides of (1.2) yields

(1)

(4.1) X P

n+l pn(i) X n(i) An(Axn i enxn) 5

Squaring both sides of (4.1) and rearranging yields
2 2
Paas = Pgay | = 13y = Byl * 22,18,y = 8) (e %, = B0y
$e) = 2 * 0w’ % T Paggy

+ Azlnx e uxf® .
n'™n " "n'n

Since A is monotone and en(i)pn(i) + Apn(i) = 0, we have (Axn + en(i)xn'xn " pn(i))

> en(i)|xn - pn(i)lz . Using (2.1) the last term on the right of (4.2) can be bounded in the
form
|ax, + "n"n|2 201+ x, - pn(i)|2 & 'pn(i)'z} :
For the second term we write
Fimyr %, = Pyl & Ix, = pn(:nl2 +3 1% - pn(1)|2 i % |pn(i)|2 /

-13~




Substituting these into (4.2) yields

2 2 2
4.3 12 = Paqiy!” 2 1= By ) 1% = Py 1™ * Yoy @ # 1By 1D
where
8 LRI IO VLG T W | ) S
n,n(i) n-1 n{i) n' nl(i) n I'n
and
¥ = Mn/n) |8 - et
n,n(i) n(i) n 'n
2

Since (An) e 1°, and the sequences are acceptably paired we have for large enough n(i) and

some a, > 0, a, < » that
n(i+l)-1 n

B, > a, and R
Baghar e jen (i)

(4.4) o

senti) m) = 7%

for n(i) < n < n(i+l), and if we denote

n(i+1)-1
ey Ty “nigy

then 1lim cn(i) = 0.

ire

Iterating (4.3) from n(i) on yields together with (4.4) that for n(i) large enough

we have

-5 I en = Pay | < 81%0) - Pay|” * Caqn 3 ¢ 12y 1)
for some & < 1, and for some D < and n(i) < n < n(i+l),

(4.6) Ix, - pnml2 <Dlx gy - pn(i)lz 't lpn(i)‘z) :

Now one completes the proof as in the proof of Proposition 1 using (4.5) and (4.6) in place

of (3.9) and (3.8).

To the end we state a simple result for operators of the form bI + B.

~14-
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Proposition 3. Let B be maximal monotone, D(B) = H and assume that B satisfies the
2 s ¢
growth condition (2.1). Assume also that b > 0 and {An} [ \El. T4 {xn} satisfies

(1.5), then it converges to the unique solution of bx + Bx O.

a
The proof is easier than that of Theorem 2 and is left to the reader. Related results are

proved in (2], (6].

=15
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